TABLE OF CONTENTS

CHAPTER NO.

 TITLE

 PAGE NO.

ABSTRACT
iv

TABLE OF CONTENTS
vi

LIST OF TABLES
xi

LIST OF FIGURES
xii

LIST OF SYMBOLS AND ABBREVIATIONS
xiv
 1.
INTRODUCTION
1

 1.1
GENERAL
1

1.2
OVERVIEW OF EMBEDDED NETWORKING
1

1.4
OBJECTIVE
3

1.5
DESIGN CONCEPTS
3

1.6
DESIGN CHALLENGES
5

1.7
LITERATURE REVIEW
6

1.8
ORGANIZATION OF THE REPORT
6

2.
DESIGN OVERVIEW
8

2.1
GENERAL
8

2.2
NODE 1 DESIGN
8

2.3
NODE 2 DESIGN
9

2.4
NODE 3 DESIGN
9

2.5
REMOTE CONTROL
9

2.6
EMBEDDED NETWORKING PROTOCOL
9

2.7
BLOCK DIAGRAM
10

2.8
CIRCUIT DIAGRAM
11

CHAPTER NO.

 TITLE

 PAGE NO.

2.9
CONCLUSION
12

3.
EMBEDDED NETWORKING AND THE CAN

PROTOCOL
13

3.1
GENERAL
13

3.2
OVERVIEW OF EMBEDDED NETWORKING

PROTOCOLS
13

3.2.1
J1939
13

3.2.2
FlexRay
14

3.2.3
LIN (Local Interconnect Network)
14

3.2.4
CAN Kingdom
14

3.2.5
CAN (Controller Area Network)
15

3.2.6
DeviceNet
16

3.3
CAN (CONTROLLER AREA NETWORK)
16

3.3.1
History of CAN
16

3.3.2
Introduction to CAN
16

3.4
THE NEED FOR SERIAL COMMUNICATION

IN VEHICLES
18

3.4.1
Use of the CAN network in vehicles
19

3.5
A TYPICAL VEHICLE NETWORK AND

ITS COMPONENTS
20

3.5.1
Engine Control Unit (ECU)
21

3.5.2
CAN Gateways
21

3.5.3
CAN bus
22

3.5.4
Controller
23

3.6
CAN MESSAGE TYPES
23

3.6.1
The data frame
23

3.6.2
The remote frame
24

3.6.3
The error frame
24
CHAPTER NO.

 TITLE

 PAGE NO.

3.6.4
The overload frame
24

3.6.5
Bus arbitration
24

3.6.6
The CAN messgage frame format
25

3.7
THE CAN STANDARD
26

3.8
STANDARD CAN AND EXTENDED CAN
27

3.8.1
The bit fields of extended CAN
28

3.8.2
The bit fields of standard CAN
29

3.9
THE RELATIONSHIP BETWEEN BUS

LENGTH AND SIGNALING RATE
30

3.10
ERROR CHECKING AND FAULT

CONFINEMENT
31

3.10.1
Error handling
32

3.10.1.1 Error signaling
32

3.10.1.2 Error detection
33

3.10.1.3 Error confinement
35

3.10.1.4 Data transfer consistency
36

3.11
PHYSICAL LAYER
36

3.11.1
CAN speeds
37

3.11.2
Identifier
38

3.11.3
Error frame
38

3.11.4
Data frame
38

3.11.5
Bit stuffing
39

3.11.6
Priority levels
39

3.11.7
Differential voltage levels in CAN
39

3.11.8
Recessive and Dominant states
39

3.11.9
Arbitration voltage levels
40

3.11.10
Arbitration bit by bit
40

3.12
CAN HIGHER LAYERS PROTOCOLS
40
CHAPTER NO.

 TITLE

 PAGE NO.

3.12.1
CANopen detailed description
41

3.13
CAN APPLICATIONS
42

3.14
CONCLUSION
43

4.
DESIGN OF NODE 3
44

4.1
GENERAL
44

4.2
CIRCUIT DIAGRAM
44

4.4
NODE 3 TASKS
45

4.4.1
Temperature measurement
45

4.4.2
Pressure measurement
46

4.4.3
Fuel level measurement
46

4.4.4
Control task
48

4.5
CONCLUSION
48

5.
DESIGN OF NODE 2
49

5.1
GENERAL
49

5.2
CIRCUIT DIAGRAM
49

5.3
NODE 2 TASKS
50

5.3.1
Obstacle detection
50

5.3.1.1 IR transmitter circuit
51

5.3.1.2 IR receiver circuit
52

5.3.2
Speed control
52

5.3.2.1 Speed control circuit
53

5.3.3
Control task
54

5.4
CONCLUSION
54

6.
DESIGN OF NODE 1
55

6.1
GENERAL
55

CHAPTER NO.

 TITLE

 PAGE NO.

6.2
CIRCUIT DIAGRAM
55

6.3
NODE 2 TASKS
56

6.3.1
IR Remote sensing
56

6.3.2
LCD display
57

6.3.3
Alarms
57

6.3.4
Control task
58

6.4
HARDWARE IMPLEMENTATION
58

6.5
CONCLUSION
59

7.
CONCLUSION
60

FUTURE WORK

60

REFERENCES

APPENDIX
LIST OF TABLES

TABLE NO.

TITLE

 PAGE NO.

3.1
CAN Versions
28

3.2
Maximum Signaling Rates for Various Cable Lengths
30

4.1
Port C (RC0 – RC3) Values for Various Fuel Levels
48
LIST OF FIGURES

FIGURE NO.

TITLE

 PAGE NO.

2.1
Block Diagram of Complete System
10

2.2
Circuit Diagram of Complete System
11

3.1
Use Of CAN Network
19

3.2
A Typical CAN & LIN based Automotive Network
20

3.3
Arbitration Mechanism
25

3.4
Typical CAN Message Format
25

3.5
CAN2.0A & CAN2.0B Frame Formats
26

3.6
The Layered ISO 11898 Standard Architecture
27

3.7
29-Bit Identifier In Extended CAN
28

3.8
11-Bit Identifier In Standard CAN
29

3.9
Can Error Frame Format
32

3.10
CAN Physical Layer And Voltage Levels
37

3.11
Typical CAN Bus Implementation
37

4.1
Circuit Diagram of Node 3
44

4.2
Circuit for Temperature Measurement Module
45

4.3
Circuit for Pressure Measurement Module
46

4.4
Circuit for Fuel Measurement Module
46

4.5
Structure of Fuel Measurement Module
47

5.1
Circuit Diagram of Node 2
49

5.2
Diagrams Showing Operation of Obstacle

Detection Module
51

5.3
IR Transmitter Circuit for Obstacle Detection Module
52

5.4
IR Receiver Circuit for Obstacle Detection Module
52

FIGURE NO.

TITLE

 PAGE NO.

5.5
Circuit of the DC Motor Drive
53

6.1
Circuit Diagram of Node 1
55

6.2
IR Remote Sensing - Receiver module
56

6.3
LCD Display Circuit
57

6.4
Alarm Circuit
57

6.5
Photograph of Prototype
59

LIST OF SYMBOLS AND ABBREVIATIONS

ADC
Analog to Digital Converter

CAN
Controller Area Network

CiA
CAN in Automation

DC
Direct Current

DPDT
Double pole Double Throw

FIFO
First-in-First-out

IR
Infra Red

LCD
Liquid Crystal Display

LED
Light Emitting Diode

LIN
Local Interconnect Network

PC
Personal Computer

PLC
Programmable Logic Controller

RC5
Remote Control 5

SAE
Society of Automotive Engineers

SPDT
Single pole Double Throw

Abstract

· Controller Area Network (CAN) is a network protocol that allows multiple processors in a system to communicate efficiently with each other. In the early 1980s microprocessors became small enough and powerful enough to start appearing everywhere, not just inside personal computers.MicroC/OS-II is a highly portable, ROMable, scalable, preemptive real-time, multitasking kernel (RTOS) for microprocessors and microcontrollers. Written in ANSI C for maximum portability, MicroC/OS-II has been ported to more than 40 different processor architectures ranging from 8- to 64-bit CPUs. We implement a one master and two slave system using the PIC18f4685 IC which has support for the CAN protocol The whole systems data is got by using visual basic software. A CAN system sends messages using a serial bus network, with the individual nodes (processors) in the network linked together in a daisy chain. Every node in the system is equal to every other node. Any processor can send a message to any other processor, and if any processor fails, the other systems in the machine will continue to work properly and communicate with each other. Any node on the network that wants to transmit a message waits until the bus is free. Every message has an identifier, and every message is available to every other node in the network. The nodes select those messages that are relevant and ignore the rest.

CHAPTER 1

INTRODUCTION

1.1 GENERAL

Automotive Electronics has been witnessing a major change from the analog world to the digital world to accommodate the rapidly growing technology so that the driving experience is made better, safer and at the same time, the end-user is provided with a variety of features that he can utilize in the vehicle. This change in the automotive industry is driven by a driving mechanism called the digital driving behavior of the vehicle.

1.2 OVERVIEW OF EMBEDDED NETWORKING

The use of embedded controllers in modern control applications has widely increased mainly because of their high stability, low power consumption, reliability and portability. Hence, microcontrollers have started replacing conventional programmable logic controllers in almost all application centric designs. With the increase in the peripheral devices and the amount of data handled for an application, a single controller/processor may not efficiently serve the purpose and this had led to the use of multiple controllers/processors in a single system. In this scenario, communication between various controllers in a huge embedded system is necessary to facilitate centralized control of the system and communication also helps in improving the overall efficiency of the system. With further increase in the application size, there is a great need for improving communication mechanisms. This is quite a complex issue because of the limited resources generally available in an embedded system. Hence,

communication in embedded systems is an area of valid interest because a better mechanism for communication in embedded systems means easier and efficient way of connecting and integrating the smaller elements to realize the overall system for a larger application and thereby improve its performance within the available limited resources.

With continuous developments in embedded networking, the controllability of a system has enormously improved irrespective of the application and size of the system. The credit goes to embedded networking protocols like CAN (Controller Area Network), DeviceNet, LIN etc. Among them, the most widely used protocol is the CAN protocol. Its wide use in the industry (particularly in automotive industry) can be attributed to the efforts taken to standardize it and also to the comparatively larger manufacturer base that provides CAN compliant devices for various applications.

1.5 DESIGN CONCEPTS

The design involves combination of both hardware and software. The hardware part includes building the electro-mechanical model for the vehicle, developing circuits for implementing the individual nodes, interfacing the various sensors associated with the tasks of the slave nodes, developing the DC motor drives for moving the vehicle, a display system to show the status of the vehicle as user-friendly data and an alarm circuit to indicate any violation of the user specified constraints for the vehicle operation.
The software part includes programming the CAN nodes to carry out specific tasks like temperature monitoring, pressure monitoring, obstacle sensing, movement of the vehicle, speed control of the vehicle, fuel monitoring, displaying the digital values of various parameters being monitored by the slave nodes, raising alarms for any violation of the user constraints for operation of the vehicle, remote control of the vehicle etc. The software part also includes defining the digital driving behavior followed by the vehicle during operation. The digital driving behavior includes prescribed speed limits, temperature limits, optimum fuel level, speed limits and time intervals for obstacle detection mechanism.

In the design of the vehicle system, a CAN network is implemented between two slave nodes and a master node where the slave nodes are responsible for various tasks that are encountered in operating a normal vehicle and the master node is responsible for processing the information obtained from the slave nodes and overall control of the vehicle. The whole design can be grouped into three modules.

The first module consists of the design related to the slave node - Node 3. Node 3 is responsible for temperature monitoring, pressure monitoring and fuel monitoring. Analog-to-digital converter is used to convert the analog temperature and pressure values to digital data and the digital data is sent to the master node for display.

The second module consists of the design related to the other slave node - Node 2. Node 2 is responsible for obstacle sensing and implementing the motor drive for moving the vehicle. Obstacle sensing is achieved by using an IR transmitter-receiver combination. The transmitter keeps sending an IR signal continuously and if there is an obstacle, the transmitted signal is reflected back which is sensed by the receiver. The receiver is continuously monitored for any signal so that when an obstacle is present, a signal is sent to the master node to indicate the presence of an obstacle. The motor drive unit consists of two dc motors - one for forward/reverse motion and the other motor for steering left/right.

The third module consists of the design related to the master node (node 1). Node 1 is responsible for processing information from the slave nodes and operating the alarm circuit, operating the relay circuit of the motor drive unit, displaying the digital values for the various parameters measured by the slave nodes, taking commands from the IR remote control for controlling the vehicle. RC5 code based IR remote control is used for controlling the vehicle. A semi autonomous vehicle has been chosen to realize the digital driving system and so, the vehicle needs manual intervention for decision making in some cases. External IR remote control serves this purpose. IR remote, RF remote or a simple wired control can be used to test the driving behavior of the vehicle.

Finally, all the three individual nodes are integrated into the CAN network and the nodes are additionally programmed to work as a CAN communication based single control system to achieve overall control of the digital driving system for the vehicle through a single master node.
1.6 DESIGN CHALLENGES

The overall hardware assembly and software coding provides a good challenge to achieve the prescribed digital driving behavior in real-time and make the vehicle operate efficiently. Issues in the design can be categorized into hardware and software challenges.
The hardware challenges include designing the circuits for each of the nodes, interfacing the sensors, interfacing the display unit, motor circuitry, alarm circuitry and realizing the CAN bus between the nodes.
The software challenges include programming each of the nodes to carry out monitoring tasks using each of the sensors, convert the analog signals to digital data (wherever applicable) and pass that digital data (control information) to the master node, programming the master node to take commands from the IR remote control, process information from the slave nodes and raise alarms if necessary.

1.7 LITERATURE REVIEW

Douglas W. Gage (1995) discusses the history of developments made in control of unmanned ground vehicles. The basic idea of a digital driving system and how to formulate digital driving system architecture have been discussed by Wuhong Wang (2002), C. Little (1999), Gerd Krämer (2001), Fei-Yue Wang et al (2002), Julian Kolodko et al (2003). Luis Manuel et al (2002) and Richard Bishop (2000) have dealt with the various features that can be included to improve the driving experience in a digital driving system. Tatsuya Yoshida et al (2004) discusses the concept of adaptive driving systems. U. Franke et al (1999) discusses various approaches to develop autonomous vehicles. The issues in developing a CAN based embedded network system have been dealt by Robert Boys (2004), Steve Corrigan (2002) and John Rinaldi et al (2003). The website of Microchip Inc. USA gives information about how to develop a CAN system using their microcontroller PIC 18F4685. The website of CAN in Automation (CiA) provides information about the basics of CAN protocol.
1.8 ORGANIZATION OF THE REPORT

The report contains six chapters covering the complete design of the digital driving system and implementation of the prototype to test the behavior of digital driving system in real-time.

Chapter 1 deals with the general introduction of the project, objective, design challenges and a brief overview of the literature survey done towards the project.

Chapter 2 gives the description of the overall system design as well as a brief description of each of the nodes in the system with necessary block diagrams and circuits. Features of the 18F4685 microcontroller along with hardware details of the prototype are also discussed in the chapter.

Chapter 3 gives a brief introduction to embedded networking and discusses CAN (Controller Area Network) in detail along with its design issues and applications.

Chapter 4 gives details of the design and implementation of the slave node - Node 3. It describes the various tasks implemented in this node along with the circuits, operation and interfacing mechanism for the sensors.

Chapter 5 gives details of the design and implementation of the slave node - Node 2. It describes the various tasks implemented in this node along with the circuits, operation and interfacing mechanism for the sensors.

Chapter 6 gives details of the design and implementation of the master node - Node 1. It describes the various tasks implemented in this node along with the circuits, operation and interfacing mechanism for the remote control, the display unit and the host PC.

The conclusion and final results of the project are presented in chapter 7.
CHAPTER 2

DESIGN OVERVIEW

2.1 GENERAL

The whole design can be divided into two stages. First stage is the development of the three individual nodes with necessary hardware interface and software to implement the various tasks performed by them. Second stage is to implement CAN network between the master node and the slave nodes and develop additional software to achieve CAN based communication among the three individual nodes.

2.2 NODE 1 DESIGN
Node 1 is the master node of the system and is implemented using a PIC 18F4685 microcontroller. The hardware modules in Node 1 circuit include the LCD display unit, the IR receiver for IR remote control access, LED alarms for each of the system parameters in case of violation of user specified constraints. Serial port communication is also implemented between the master node and the host PC to update the path of the vehicle since startup. The software part includes the graphical user interface on the host PC for the serial port communication based vehicle path tracking feature is developed using visual basic software and microcontroller programs for displaying the current status of the vehicle, sensing IR signal from the remote control circuit through the IR receiver, and for monitoring the current status of the vehicle by processing various control information received from the slave nodes in the system.
2.3 NODE 2 DESIGN
Node 2 is a slave node in the system and is implemented using the same PIC 18F4685 microcontroller used for master node implementation. The hardware modules in Node 2 circuit include the speed control unit and the obstacle detection unit. The software part includes microcontroller sub-routines to set up the current speed of the vehicle, sensing any obstacle by using an IR transmitter-receiver combination and sending the current status signal of the slave node to the master node continuously.

2.4 NODE 3 DESIGN
Node 3 is a slave node in the system and it is also implemented using the PIC 18F4685 microcontroller. The hardware modules in Node 3 circuit include the pressure monitor, fuel-level monitor and temperature monitor. The software part includes microcontroller sub-routines for ADC conversion of the analog values of temperature and pressure measured by the respective sensors as well as fuel-level measurement and sending the current status signal of the slave node to the master node continuously.

2.5 REMOTE CONTROL

An IR (InfraRed) remote based on RC5 (Remote Control 5) encoding operating at 38 kHz is used for this purpose. The output IR signals for various input keys of the remote control are available on internet, which are used for programming the master controller to receive control inputs from the remote control and respond to them.

2.6 EMBEDDED NETWORKING PROTOCOL

Embedded networking based on CAN (Controller Area Network) protocol is used in the realizing the prototype. Accordingly, the microcontroller chosen namely PIC 18F4685 from microchip is a CAN enabled microcontroller.

2.7 BLOCK DIAGRAM

[image: image37.wmf]IR Receiver

TSOP1738

17(RC2/CCP1)

R4

1K

VCC

LED

LED

LED

LED

LED

(RB6/KBI2/PGC)39

(RC7/RX/DT)26

(RB5/KBI1/PGM)38

(RD3/PSP3/C2IN-)22

8(RE0/RD/AN5)

(RB4/KBI0/AN9)37

(RD6/PSP6/P1C)29

9(RE1/WR/AN6/C1OUT)

(RB3/CANRX)36

10(RE2/CS/AN7/C2OUT)

(RC5/SDO)24

(RB2/INT2/CANTX)35

11(VDD)

(VSS)31

(RD5/PSP5/P1B)28

(RC4/SDI/SDA)23

(RB1/INT1/AN8)34

(RD2/PSP2/C2IN+)21

12(VSS)

(RD4/PSP4/ECCP1/P1A)27

(RB0/INT0/FLT0/AN10)33

13(OSC1/CLKI/RA7)

(VDD)32

16(RC1/T1OSI)

1(MCLR/VPP/RE3)

(RC6/TX/CK)25

VCC

2(RA0/AN0/CVREF)

18(RC3/SCK/SCL)

(RB7/KBI3/PGD)40

PIC18F4685

VCC

3(RA1/AN1)

14(OSC2/CLKO/RA6)

4(RA2/AN2/VREF-)

15(RC0/T1OSO/T13CKI)

5(RA3/AN3/VREF+)

19(RD0/PSP0/C1IN+)

20(RD1/PSP1/C1IN-)

(RD7/PSP7/P1D)30

6(RA4/T0CKI)

To Node 2,3 TX

To Node 2,3 RX

J4

LCD Display

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

VCC

NODE 1 (MASTER)

R9

10 K POT

1

3

2

C5

33pf

C4

33pf

Y1

4.00mhz

7(RA5/AN4/ SS /HLVDIN)

VCC

R4

100ohms

C5

100mfd

Figure 2.1 Block Diagram of Complete System
The block diagram of the complete system is shown in Figure 2.1. The remote sensing module and the LCD display unit along with the alarm circuits are interfaced to the master node – Node 1. The master node is connected to the two slave nodes using a CAN bus. The obstacle sensing module and the speed control/monitoring module are interfaced to the slave node – Node 2. The fuel measurement module, the temperature sensor and the pressure sensor are interfaced to the slave node – Node 3. The three individual nodes are connected by a CAN bus for CAN protocol based communication. Vehicle path tracking is achieved by using a host PC that is connected to the master controller (Node 1) through serial communications port of the PC. Control of the vehicle is through an IR remote. The prototype is made up of the electro-mechanical vehicle that is designed to study and test digital driving behavior of the vehicle in real-time.

2.8 CIRCUIT DIAGRAM

[image: image1.png]Engine/Motor Speed Control
CAN Node 2 >
(Slave Node)
IR Obstacle Sensor
<+~ IR Remote
— Display
CAN Node 1 PC Display
*| (Vehicle Path Tracking)
(Master Node)
— Speed Alarm
— Obstacle Alarm
— Fuel Alarm
— Temperature Alarm
— Pressure Alarm
[*—| Fuel Level Measurement
CAN Node 3 5
(SlaveNods) [+ | Temperature Monitor
— Pressure Monitor

[image: image2]
Figure 2.2 Circuit Diagram of Complete System

The circuit in Figure 2.2 shows the hardware connection of the various nodes in the CAN network. Each microcontroller node is implemented using PIC 18F4685 microcontroller from microchip. Chapters 4, 5 and 6 discuss the design of each of the nodes individually along with the description of its tasks and the hardware components connected to it to achieve those tasks.
2.9 CONCLUSION

The overall system, various functions performed by all the nodes and hardware-software involved in the design of each of the nodes are discussed along with hardware requirements. History of CAN protocol, basics of CAN implementation and its applications are discussed.
CHAPTER 3

EMBEDDED NETWORKING AND THE CAN PROTOCOL

3.1 GENERAL

The realization of the proposed digital driving system is based on the implementation of a CAN based embedded network system that divides the vehicle functions into groups and executes each of them under different microcontroller nodes of the embedded network system, thereby providing better controllability as well as observability of the vehicle status. This chapter gives a brief introduction to various embedded networking protocols with emphasis on CAN and discusses the basics of operation of a CAN based system and the issues to be considered in designing a CAN based system.

3.2 OVERVIEW OF EMBEDDED NETWORKING PROTOCOLS

Embedded networking refers to the mechanism that provides a setup for communication among various microcontrollers in a multi-controller system, working as a cluster to achieve a larger application. The various protocols available for implementing embedded network are as listed below.

3.2.1 J1939

J1939 is the automotive CAN standard developed by the Truck & Bus Control and Communications Network Subcommittee of the Society of Automotive Engineers (SAE). SAE maintains family of standards which govern the design and use of devices that transmit electronic signals and control information among vehicle components. Though, it was initially planned for use

in light, medium and heavy duty trucks it is also being used in conventional passenger vehicles now. J1939 was designed for the CAN 2.0 (CAN Part B) specification. It is unique in that it is the only application layer in this paper that uses the larger 29 bit identifier and the only one that does not require a master. Instead of the traditional Master-Slave relationship, it uses a peer to peer protocol where most messages are broadcasted i.e. directed to all individual nodes.

3.2.2 FlexRay

It is a fault-tolerant high-speed communication protocol targeted towards safety-related applications. The protocol can be operated in single or dual channel mode, where each channel has a maximum data rate of 10 Mbps. Using a dual-channel configuration, a FlexRay network can operate at speeds 20x faster than the maximum CAN bus data rate specification. Along with enabling safety-related applications, a FlexRay network is well suited as a communication backbone connecting heterogeneous networks together.

3.2.3 LIN (Local Interconnect Network)

LIN is a low-speed master-slave time triggered protocol meant to connect on-off type loads to higher speed networks. Typical loads include door locks, sun roofs, rain sensors, and powered mirrors. A LIN network is used as a low cost alternative if the full functionality of the CAN protocol is not required.

3.2.4 CAN Kingdom

One of the more unique CAN application layers is CAN Kingdom. Unlike other CAN protocols CAN Kingdom doesn’t use the OSI model. Instead it uses a model organized around the concept of a Nation with a Postal System and Cities, Mayors and Letters as a model for its behavior.
In this model the system hardware is called ‘The Capital’. System software that controls ‘The Capital’ is ‘The King’. The CAN Bus and the CAN protocol is called ‘The Postal System’. A CAN node is a ‘City’ which is governed by a ‘Mayor’ (Application code). And of course each ‘City’ has a CAN Controller (‘Post Office’) that has certain services (‘Postmaster’) available. CAN messages, (‘Letters’) are always sent as bulk mail. A ‘Letter’ is one CAN Data frame (‘Page’) in an ‘Envelope’ (CAN identifier). Each of the eight CAN bytes of a CAN Data Field is a ‘Line’ on that ‘Page’. If more then eight ‘Lines’ need to be sent they are included in a ‘Document’. A document can have more then one ‘Page’.

Nodes in a CAN Kingdom system have no pre-configured address. Messages on the CAN bus use the CAN identifiers as message ID’s. Multiple CAN nodes can even use the same CAN identifier value except for ID 00000000. The ‘King’ (meaning the Master) reserves ID 00000000 for itself. A CAN node decode forms (set of rules) that instruct it how to code or decode data. The power in a CAN Kingdom system is all in the Master node. The Master transmits a set of rules to nodes that govern how they pass information to each other. A CAN Kingdom Master creates a set of CAN protocol primitives for CAN Nodes in the system. The system designer uses these “forms” as a tool to control the nodes.

3.2.5 CAN (Controller Area Network)

CAN is an event driven communication protocol used in applications such as engine management and body electronics. The maximum specified data rate is 1 Mbps, though the practical maximum is 500 Kbps. High-speed CAN is suitable for critical loads such as anti-lock braking systems and cruise control. Low-speed CAN is fault-tolerant and used for loads such as power seats and motorized windows. “CAN open” is the standard widely used in the implementation of systems based on CAN protocol. The standard is controlled by the non-profit trade association “Can In Automation” (CiA).

3.2.6 DeviceNet

DeviceNet is a CAN open standard created by Allen Bradley in the mid 1990s. To encourage its development and widespread use, management of the specification was transferred to the Open DeviceNet Vendor Association (ODVA). The ODVA is a non-profit organization that develops and markets DeviceNet and promotes its worldwide adoption. DeviceNet is based on the Part A specification and uses the eleven bit identifier in four different ways. DeviceNet uses abstract object models to describe communication services, data and behavior.

3.3 CAN (CONTROLLER AREA NETWORK)
3.3.1 History of CAN

1983:
Initial development by Bosch

1986:
Official introduction of CAN protocol

1991:
CAN specification 2.0 published

1991:
first application layer (CAN Kingdom)

1992:
2nd AL, CAN Application Layer (CAL) by CiA

1992:
1st cars from Mercedes-Benz using CAN

1993:
becomes an international standard (ISO 11898)

1994:
modifications for industrial use :

DeviceNet by Allen- Bradley and SDS by Honeywell

1995:
CAN open protocol from CiA (CAN in Automation)

2000:
Time-triggered comm. protocol for CAN (TTCAN)
3.3.2 Introduction to CAN

Robert Bosch introduced the Controller Area Network (CAN) serial bus in 1986, for automotive engine control communication, to reduce the weight and cost of wiring harnesses and add additional capabilities. Most of today’s passenger cars have a CAN bus under the hood. It is also used in factory automation, medical, marine, military and anywhere a simple yet robust network is needed. Some also use CAN for body control also called Multiplexing. In the early nineties, two initiatives took place on both side of the Atlantic ocean. In Europe at Holger Zeltwanger initiative, the CAN In Automation (CiA) was created with many Manufacturers from different industries joining forces. Shortly after, the CANopen higher layer protocol was defined as a framework for programmable systems. The CANopen communication profile paved the way for the multiple applications’ dedicated profiles that exist today. At the same time in North America Allen-Bradley and Honeywell teamed up to develop a CAN higher layer protocol for factory automation. The outcome of this initiative was the DeviceNet High Layer Protocol used in most of the factory automation systems in North America nowadays. DeviceNet is now supported by the Open DeviceNet Vendor Association (ODVA).
Since year 2000, the emergence of CAN in non-traditional applications (i.e. outside Automotive and Factory Automation) can be seen. This is the result of smaller industries adopting a well proven standard for communications. Credit has to be paid to CANopen which offers a framework and CAN In Automation that promotes and facilitate such initiatives. The CAN deployment in Medical application and the CANopen in operating room are good examples. On a different note, it shouldn’t be surprising to learn that monorail in Las Vegas rely on CAN for their comfort and safety of the automatic door control.

CAN, by itself, is not necessarily a complete network system. It consists of only the physical layer (the two wires), the priority scheme (highest priority message always gets through first) and some error detection and handling circuitry. This allows simple messages of from zero to eight bytes to be passed on the system. CAN, like most modern networks, is serial based. This means that the information travels along the network one bit at a time. A CAN network needs from one to two lines depending on the design. Parallel networks usually require more than 8 wires plus several handshaking lines to facilitate the data transfer. Most network systems using CAN will employ a higher level protocol such J1939, CANopen or a proprietary scheme to create and process messages over the basic CAN network.
3.4 THE NEED FOR SERIAL COMMUNICATION IN VEHICLES

Many vehicles already have a large number of Electronic Control Systems (ECSs). The growth of Automotive Electronics is the result partly of the customer’s wish for better safety and greater comfort and partly of the government’s requirements for improved emission control and reduced fuel consumption. Control devices that meet these requirements have been in use for some time in the area of engine timing, gearbox and carburetor throttle control and in anti-block systems (ABS) and acceleration skid control (ASC).
The complexity of the functions implemented in these systems necessitates an exchange of data among them. With conventional systems, data is exchanged by means of dedicated signal lines, but this is becoming increasingly difficult and expensive as control functions become ever more complex. In the case of complex control systems (such as Motronic in particular), the number of connections cannot be increased much further. Moreover, a number of systems are being developed which implement functions covering more than one control device. For instance, ASC requires the interplay of engine timing and carburettor control in order to reduce torque when drive wheel slippage occurs. Another example of functions spanning more than one control unit is electronic gearbox control, where ease of gearchanging can be improved by a brief adjustment to ignition timing.

If we also consider future developments aimed at overall vehicle optimization, it becomes necessary to overcome the limitations of conventional control device linkage. This can only be done by networking the system components using a serial data bus system. lt was for this reason that Bosch developed the “Controller Area Network” (CAN), which has since been standardized internationally (ISO 11898) and has been “cast in silicon” by several semiconductor manufacturers. Using CAN, peer stations (controllers, sensors and actuators) are connected via a serial bus. The bus itself is a symmetric or asymmetric two wire circuit, which can be either screened or unscreened. The electrical parameters of the physical transmission are also specified in ISO 11898. Suitable bus driver chips are available from a number of manufacturers.

The CAN protocol, which corresponds to the data link layer in the ISO/OSI reference model, meets the real-time requirements of automotive applications. Unlike cable trees, the network protocol detects and corrects transmission errors caused by electromagnetic interference. Additional advantages of such a network are the easy configurability of the overall system and the possibility of central diagnosis. The purpose of using CAN in vehicles is to enable any station to communicate with any other without putting too great a load on the controller computer.

3.4.1 Use of the CAN network in vehicles

[image: image3.emf]
Figure 3.1 Use Of CAN Network
A CAN implementation of an ordinary network can certainly ease the design process by cutting down the entire connections between various parts of the vehicle to a simple bus based architecture with each part connected to the common Can bus with only a pair of CAN bus lines. The Figure 3.1 illustrates the connections in a typical vehicle before and after CAN implementation.
 There are four main applications for serial communication in vehicles, each having different requirements and objectives.

●
Networking controllers for engine timing, transmission, chassis and brakes. The data rates are in the range - typical of real-time systems of 200 kbit/s to 1 Mbit/s.

●
Networking components of chassis electronics and electronics which make the vehicle more comfortable. Examples of such multiplex applications are lighting control, air-conditioning, central locking and seat and mirror adjustment. Particular importance has to be attached here to the cost of the components and wiring requirements. Typical data rates are around 50 kbit/s.

●
In the near future, serial communication will also be used in the held of mobile communication in order to link components such as car radios, car telephones, navigation aids etc. to a central, ergonomically designed control panel. The functions defined in the Prometheus project, such as vehicle-to-vehicle and vehicle-to-infrastructure communication will depend to a large extent on serial communication.

●
At present, CAN can be used for the first three applications, but for diagnosis the preferred solution is an interface according to ISO 9141.
3.5 A TYPICAL VEHICLE NETWORK AND ITS COMPONENTS

[image: image4.emf]
Figure 3.2 A Typical CAN & LIN based Automotive Network

Figure 3.2 has two buses connected together (CAN and LIN) by a gateway that will be in one of the ECMs (Electronic Control Module), depending on the design. Often the gateway is in the ECU (Engine Control Unit). The ECU contains vital engine control functions and is often the clearinghouse for vehicle diagnostics such as OBDII and/or a proprietary system. This is a representative system and there are many other variations.

3.5.1 Engine Control Unit (ECU)

The Engine Control Unit is usually the most important module in a vehicle and is central to the entire system. The ECU is also another ECM. An ECU’s possible components are shown in the four boxes on the right side of Figure 3.2. The general term for vehicle modules in this article is ECM (Electronic Control Module). Each ECM can exchange information with other modules to accomplish certain tasks. For instance, the transmission module will supply the speedometer with the current speed as well as optionally to the radio to modify the volume: this is transmitted over the CAN bus as general network traffic.
3.5.2 CAN Gateways

Gateways and bridges enable CAN-based networks to be linked together or linked to networks with other protocols. A gateway between a CAN and another communication network maps the protocols of the individual networks. There exist many different types of CAN gateways, e.g., CAN-RS232 and CAN-TCP/IP gateways. The latter can provide remote access to a CAN through the Internet, which allows worldwide monitoring and maintenance. The networks connected through a gateway or a bridge are disconnected in terms of their real-time behavior, so obviously the timing and performance of the complex inter-connected network can be hard to predict even if the individual networks are predictable.

Ethernet (or rather Ethernet/IP) is quite a different communication protocol compared to CAN, but is still of growing importance in industrial automation either in constellations with CAN or on its own. Traditionally, Ethernet is used in office automation and multimedia applications, while CAN dominates in vehicles and in certain industrial automation systems. The strength of Ethernet is the ability to quickly move large amounts of data over long distances and that the number of nodes in the network can be large. CAN, on the other hand, is optimized for transmitting small messages over relatively short distances. A drawback with a network based on the Ethernet protocol is that the nodes need to be quite powerful and complex (and therefore more expensive) in order to handle the communication control. Another drawback with Ethernet is that during network traffic congestion the delay jitter can be severe and unpredictable, although at low network load Ethernet gives almost no delay.

3.5.3 CAN bus

The CAN bus is a two-wire serial bus with Multi-Master capability. This means that multiple devices sitting on a single two-wire bus can talk to one another. CAN includes a CSMA/CD (Carrier Sense Multiple Access with Collision Detection). Each device can transmit a message and will retry if it loses the arbitration to another device. Each device listen to the bus and thus a device trying to transmit can determine easily if the message ongoing is the same than the one it tries to transmit. If it is different, it will release the bus immediately. This arbitration mechanism ensures that one master will always win, thus no messages will be lost to a collision. In CAN, errors are detected with a CRC check. Message are acknowledged at the end of the frame by a special acknowledge bit. Receivers assert the ACK bit acknowledge proper reception. With all the above, The CAN bus can offer a 100% data integrity in the harsh environment found in cars and manufacturing floors.

The CAN robustness has a cost. All nodes are synchronized on the same bit time period. The group delay cannot exceed a fraction of the bit time period which lead to the maximum bus throughput being a function of the bus length. The maximum throughput is 1Mb/s with up to 40m bus length and 50Kb/s with up to 1km bus length. With point-to-point Ethernet LAN connection between a device and a bridge with a UTP5 cable 10Mb/s could be achieved up to 100m.

3.5.4 Controller

The CAN controller handles the delineation of incoming frames, and extraction of the various payload information carried by the frame. The CAN controller assembles the frames on the transmit side and then attempts to send it on the bus while monitoring it. It will drop the line if it loses the arbitration.

3.6 CAN MESSAGE TYPES

There are four different message types or frames that can be transmitted on a CAN bus: the data frame, the remote frame, the error frame, and the overload frame. A message is considered to be error free when the last bit of the ending EOF field of a message is received in the error–free recessive state. A dominant bit in the EOF field causes the transmitter to repeat a transmission.

3.6.1 The data frame

The data frame is the most common message type, and is made up by the arbitration field, the data field, the CRC field, and the acknowledgement field. The arbitration field determines the priority of a message when two or more nodes are contending for the bus. The arbitration field contains an 11-bit identifier for CAN 2.0A in Figure 3.5 and the RTR bit, which is dominant for data frames. For CAN 2.0B in Figure 3.5 it contains the 29-bit identifier and the RTR bit. Next is the data field which contains zero to eight bytes of data, and the CRC field which contains the 16-bit checksum used for error detection. Lastly, there is the acknowledgement field. Any CAN controller that is able to correctly receive a message sends a dominant ACK bit that overwrites the transmitted recessive bit at the end of correct message transmission. The transmitter checks for the presence of the dominant ACK bit and retransmits the message if no acknowledge is detected.

3.6.2 The remote frame

The intended purpose of the remote frame is to solicit the transmission of data from another node. The remote frame is similar to the data frame, with two important differences. First, this type of message is explicitly marked as a remote frame by a recessive RTR bit in the arbitration field, and secondly, there is no data.

3.6.3 The error frame

The error frame is a special message that violates the formatting rules of a CAN message. It is transmitted when a node detects an error in a message, and causes all other nodes in the network to send an error frame as well. The original transmitter then automatically retransmits the message. There is an elaborate system of error counters in the CAN controller which ensures that a node cannot tie up a bus by repeatedly transmitting error frames.

3.6.4 The overload frame

The overload frame is mentioned here for completeness. It is similar to the error frame with regard to the format, and it is transmitted by a node that becomes too busy. It is primarily used to provide for an extra delay between messages.

3.6.5 Bus arbitration
The arbitration mechanism is explained in Figure 3.3. As we can see from the Figure 3.3, the node1 wins the arbitration and continues on with its message transmission while node2 and node3 wait the end of frame before re-attempting to send their messages. Each messages start with an address field. As addresses are unique, the arbitration will be completed at the end of address transmission on the bus, and only one device will carry-on with message transmission.
[image: image5.png]Node 1: TxD
Node 2: TxD
Node 3: TxD

CAN Bus

Node 2
loses Arbitration

Node 3 loses
Arbitration

Figure 3.3 Arbitration Mechanism

3.6.6 The CAN messgage frame format

[image: image6.emf]
Figure 3.4 Typical CAN Message Format

The Frame format of a typical CAN message frame is shown in Figure 3.4. CAN protocol have specified 2 addressing schemes ─ CAN2.0A with 11 bit address and CAN2.0B with 29 bit address. 11 bit address CAN2.0A is used for small networks with 2048 different addresses maximum. 2048 different addresses translate in 200 nodes maximum. CAN2.0B with 29-bit address push the limit much farther. The data field in CAN2.0A and CAN2.0B is 8 bytes. This is dimensioned for the short messages exchanged in CAN applications. The DLC field indicates how many data bytes are present in the data field (max 8) higher layer protocols provide a way to exchange messages with more than 8 bytes data. This is called fragmented messaging. A simple example to illustrate this feature is the field reprogramming of devices installed on a network. While the transmitter drive the bus from the Start of Frame (SOF) to the CRC and Delay bit, the receiver drive the ACK bit. This is the way the transmitter is informed that receivers received the frame. Bit stuffing is implemented on the message as indicated in the figure above. Bit stuffing consists upon adding a bit of the opposite value following a sequence of 5 consecutive bits at the same value. Bit stuffing provides a minimum density of edges to help devices stay in synchronization. Figure 3.5 shows the CAN2.0A and CAN2.0B frame formats. CAN2.0A and CAN2.0B are also called as standard CAN and extended CAN respectively.

[image: image7.emf]
Figure 3.5 CAN2.0A & CAN2.0B Frame Formats

3.7 THE CAN STANDARD
CAN is an International Standardization Organization (ISO) defined serial communications bus originally developed for the automotive industry to replace the complex wiring harness with a two-wire bus. The specification calls for signaling rates up to 1 Mbps, high immunity to electrical interference, and an ability to self-diagnose and repair data errors. These features have led to CAN’s popularity in a variety of industries including automotive, marine, medical, manufacturing, and aerospace.

[image: image8.emf]
Figure 3.6 The Layered ISO 11898 Standard Architecture

The CAN communications protocol, ISO 11898, describes how information is passed between devices on a network, and conforms to the Open Systems Interconnection (OSI) model that is defined in terms of layers. Actual communication between devices connected by the physical medium is defined by the physical layer of the model.
The ISO 11898 architecture defines the lowest two layers of the seven layer OSI/ISO model as the data-link layer and physical layer in Figure 3.6. In Figure 3.6, the application layer establishes the communication link to an upper-level application specific protocol such as the vendor independent CANopen protocol. This protocol is supported by the international users and manufacturers group, CAN in Automation (CiA). Additional CAN information is given by the CiA website. There are many similar emerging protocols dedicated to particular applications like industrial automation or aviation. Examples of industry-standard CAN-based protocols are KVASER’s CAN Kingdom, Allen-Bradley’s DeviceNetTM and Honeywell’s Smart Distributed System (SDSTM).

3.8 STANDARD CAN AND EXTENDED CAN

The CAN protocol is a carrier-sense multiple-access protocol with collision detection and arbitration on message priority (CSMA/CD+AMP). CSMA means that each node on a bus must wait for a prescribed period of inactivity before attempting to send a message. CD+AMP means that collisions are resolved through a bit-wise arbitration, based upon a preprogrammed priority of each message in the identifier field of a message. The higher priority identifier always wins bus access.
The first version of the CAN standards listed in Table 3.1, ISO 11519 (Low-Speed CAN) is for applications up to 125 kbps with a standard 11-bit identifier. The second version, ISO 11898 (1993), also with 11-bit identifiers provides for signaling rates from 125 kbps to 1 Mbps while the more recent ISO 11898 amendment (1995) introduces the extended 29-bit identifier. The ISO 11898 11-bit version is often referred to as Standard CAN Version 2.0A, while the ISO 11898 amendment is referred to as Extended CAN Version 2.0B. The Standard CAN 11-bit identifier field in Figure 3.7 provides for 211, or 2048 different message identifiers, while the Extended CAN 29-bit identifier in Figure 3.8 provides for 229, or 537 million identifiers.

Table 3.1 CAN Versions

	Nomenclature
	Standard
	Max. Signaling Rate
	Identifier

	Low–Speed CAN
	ISO 11519
	125 kbps
	11-bit

	CAN 2.0A
	ISO 11898:1993
	1 Mbps
	11-bit

	CAN 2.0B
	ISO 11898:1995
	1 Mbps
	29-bit

3.8.1 The bit fields of extended CAN
[image: image9.emf]
Figure 3.7 29-Bit Identifier In Extended CAN

As shown in Figure 3.7, the Extended CAN message is the same as the Standard message with the addition of:

· SRR—The substitute remote request (SRR) bit replaces the RTR bit in the standard message location as a placeholder in the extended format.

· IDE—A recessive bit in the identifier extension (IDE) indicates that there are more identifier bits to follow. The 18-bit extension follows IDE.

· r1—Following the RTR and r0 bits, an additional reserve bit has been included ahead of the DLC bit.

3.8.2 The bit fields of standard CAN

[image: image10.emf]
Figure 3.8 11-Bit Identifier In Standard CAN

The bit fields of standard CAN shown in Figure 3.8 are explained below:

· SOF—The single dominant start of frame (SOF) bit marks the start of a message, and is used to synchronize the nodes on a bus after being idle.

· Identifier—The Standard CAN 11-bit identifier establishes the priority of the message. The lower the binary value, the higher its priority.

· RTR—The single remote transmission request (RTR) bit is dominant when information is required from another node. All nodes receive the request, but the identifier determines the specified node. The responding data is also received by all nodes and used by any node interested. In this way all data being used in a system is uniform.

· Data—Up to 64 bits of application data may be transmitted.

· IDE—A dominant single identifier extension (IDE) bit means that a standard CAN identifier with no extension is being transmitted.

· r0—Reserved bit (for possible use by future standard amendment).

· DLC—The 4-bit data length code (DLC) contains the number of bytes of data being transmitted.
· CRC—The 16-bit (15 bits plus delimiter) cyclic redundancy check (CRC) contains the checksum (number of bits transmitted) of the preceding application data for error detection.

· ACK—Every node receiving an accurate message overwrites this recessive bit in the original message with a dominate bit, indicating an error-free message has been sent. Should a receiving node detect an error and leave this bit recessive, it discards the message and the sending node repeats the message after re-arbitration. In this way each node acknowledges (ACK) the integrity of its data. ACK is 2 bits, one is the acknowledgement bit and the second is a delimiter.

· EOF—This end-of-frame (EOF) 7-bit field marks the end of a CAN frame (message) and disables bit–stuffing, indicating a stuffing error when dominant. When 5 bits of the same logic level occur in succession during normal operation, a bit of the opposite logic level is stuffed into the data

· IFS—This 7-bit inter-frame space (IFS) contains the amount of time required by the controller to move a correctly received frame to its proper position in a message buffer area.

3.9 THE RELATIONSHIP BETWEEN BUS LENGTH AND

 SIGNALING RATE

The table 3.2 gives information about the possible signal rate for various CAN bus lengths. It can be inferred that the signaling rate decreases with increase in bus length.
Table 3.2 Maximum Signaling Rates for Various Cable Lengths

	BUS LENGTH (m)
	SIGNALING RATE (kbps)

	30
	1000

	100
	500

	250
	250

	500
	125

	1000
	62.5

3.10 ERROR CHECKING AND FAULT CONFINEMENT

The robustness of CAN may be attributed in part to its abundant error checking procedures. The CAN protocol incorporates five methods of error checking: three at the message level and two at the bit level. If a message fails with any one of these error detection methods, it is not accepted and an error frame is generated from the receiving nodes, causing the transmitting node to resend the message until it is received correctly. However, if a faulty node hangs up a bus by continuously repeating an error, its transmit capability is removed by its controller after an error limit is reached.
At the message level are the CRC and the ACK slots. The 16-bit CRC contains the checksum of the preceding application data for error detection with a 15-bit checksum and 1-bit delimiter. The ACK field is two bits long and consists of the acknowledge bit and an acknowledge delimiter bit. Finally, at the message level there is a form check. This check looks for fields in the message which must always be recessive bits. If a dominant bit is detected, an error is generated. The bits checked are the SOF, EOF, ACK delimiter, and the CRC delimiter bits.

At the bit level each bit transmitted is monitored by the transmitter of the message. If a data bit (not arbitration bit) is written onto the bus and its opposite is read, an error is generated. The only exception to this is with the message identifier field which is used for arbitration, and the acknowledge slot which requires a recessive bit to be overwritten by a dominant bit. The final method of error detection is with the bit stuffing rule where, after five consecutive bits of the same logic level, if the next bit is not a compliment, an error is generated. Stuffing ensures rising edges available for on-going synchronization of the network, and that a stream of recessive bits are not mistaken for an error frame, or the seven-bit interframe space that signifies the end of a message. Stuffed bits are removed by a receiving node’s controller before the data is forwarded to the application.

With this logic, an active error frame consists of six dominant bits—violating the bit stuffing rule. This is interpreted as an error by all of the CAN nodes which then generate their own error frame. This means that an error frame can be from the original six bits to twelve bits long, with all the replies. This error frame is then followed by a delimiter field of eight recessive bits and a bus idle period before the corrupted message is retransmitted. It is important to note that the retransmitted message still has to contend for arbitration on the bus.
3.10.1 Error handling

An extensive set of error detection methodologies is used in CAN in order to enforce the reliability of communication object transfer. Furthermore, as a general rule, errors are signalled as soon as they are detected, a fundamental condition to obtain low error recovery latencies. Error signaling is performed in CAN through the broadcast of special purpose data-link packets.

3.10.1.1 Error signaling

[image: image11.png]6 bits. 0-6 bits 8 bits

FowD Srror iog | Error riog | Eror et

Figure 3.9 CAN Error Frame Format

Most of the abnormal network operating conditions are signaled, by the node detecting such condition, through the issue of an error frame. An error frame begins with the transmission of an error flag and ends with an error delimiter. This last element always consists in a sequence of eight recessive bits. On the other hand, the error flag can either comprise a sequence of six consecutive dominant bits (active error flag) or a sequence of six consecutive recessive bits (passive error flag), depending on the node error status. Error signaling is performed as follows:

•
The node detecting the error and initiating the error signaling starts it by

transmitting one error flag

•
If there are nodes that have not yet detected the error, the transmission

 of that error flag will, in most cases, lead to an error condition

•
Therefore, all nodes respond to an error by starting their own transmission of an error flag

•
At most, two error flags will flow in the network before the joint transmission by all the nodes, of the corresponding ending delimiter as in Figure 3.9.

•
Error frames are not subject either to CRC checking or to bit-stuffing coding.

3.10.1.2 Error detection

A set of different mechanisms are provided in CAN for error detection. These mechanisms include:

· Bit Errors - each node listens the bus while transmitting and compares both streams on a bit- by-bit basis. When the transmitted bit level does not match the monitored one, error signaling is started at the next transmitted bit. Bit error checking is not performed in frame fields where transmitted/monitored bit levels are allowed to differ, i.e. inside the arbitration field, at the acknowledge slot and while sending a passive error flag.

· Stuff Errors - a sequence of more than stuff consecutive bits with identical polarity is detected in a data or remote frame, within the corresponding bit stuffing encoding range. Transmission of an error flag is started immediately after detection of the bit stuffing code violation.

· CRC Errors - a frame heard without errors should be acknowledged to the transmitting node, by super scribing with a dominant level, the recessive acknowledge slot issued by the transmitter. Conversely, when a CRC error is detected, the receiver takes no action at the acknowledge slot and starts error signaling only at the bit following the acknowledge delimiter, unless an error frame due to another error condition has already been started.

· Acknowledge Errors - a transmitting node does not get any acknowledgment from the receivers. Recognition of the error is restricted to the transmitting node. Error signaling is started at the acknowledge delimiter.

· Form Errors - a receiver detects a value violation in a fixed form frame field. This includes: the 1-bit CRC delimiter, the 1-bit acknowledge delimiter and the 7-bit end-of-frame delimiter, in data and remote frames; the full error and overload frames. The transmission of the corresponding error flag is started immediately

Besides the aforementioned errors, there are another set of conditions that prevents normal network operation during the time required for its recovery. They concern violation of the three recessive bit period (intermission) that mandatory precedes any data/remote frame transmission and are known, in CAN terminology, as overload conditions. Like other errors, overload conditions are also signaled to other nodes through the broadcast of a special purpose data link packet, known in CAN terminology as overload frame.

Overload frames have the same structure than error frames (i.e. an overload flag followed by overload delimiter) and are broadcast through a similar method. The only difference regards overload flag: it always consists of six consecutive dominant bits. The need for overload signaling can be due to external reasons: detection of a dominant bit during intermission; a receiver detects a dominant bit at the last bit of the end of frame delimiter. Overload signaling can also be performed under “request’, due to the need of an extra delay by internal receiver circuitry. A fundamental difference between errors and overload conditions is that the latest ones do influence the operation of error confinement mechanisms (to be addressed in next section).

3.10.1.3 Error confinement

The error confinement mechanisms provided by the CAN protocol aims to distinguish between temporary errors and permanent failures as well the shutdown of defective nodes. These mechanisms are based on two different error counters recording, at each node, transmit and receive errors. These counters have a non-proportional update method, with each error causing an increment larger than the decrement resulting from a successful data or remote frame transfer. The rules used in error counting have been defined in order that nodes closer to the error-locus will experience, with a very high probability, the highest error count increase. This way, disturbances due to a faulty node can be localized and their influence restricted, accordingly with the following classification:

· Error-Active - the normal operating state. Such a node is able to transmit and receive frames and fully participates in error signaling.

· Error-Passive - the node is still able to transmit and receive frames, but: after transmitting a data or remote frame the node requires an extra eight bit bus idle period following the intermission, before it can start a new transmission error signaling is performed by issuing a passive error flag, meaning it has only guarantees to succeed if the node was transmitting.

· Bus-Off - a node in this state does not participate in any bus activity, being unable to send or receive frames.
A node enters the error-active state after power-on initialization with both error counters set to 0. It will become error-passive if any error counter exceeds 127. An error-passive node goes back to error-active when both counters are equal to or lower than 127. Conversely, an error-passive node goes bus-off after its transmitter error counter exceeds 255. A node in the bus-off state is allowed to become error-active after a reset (that sets to 0 both error counters) and after 128 occurrences of 11 consecutive recessive bits have been monitored on the bus line.

3.10.1.4 Data transfer consistency

The set of error detection mechanisms described in section 3.11.1.2 aims to ensure consistency of data transfers among error-active nodes. Even under the assumption that no transmitter failure occurs, it is required an extra condition to ensure that behaviour. Frame Validity Rule - for a data/remote frame transfer be considered valid by a transmitter it is required that no error occurs until the end of the corresponding end of frame delimiter.
On the other hand, receiver considers that transfer valid if there is no error until the last but one bit of the end of frame delimiter. Should the transmitter and the receivers obey to the same validity rule, an error in the last bit of a frame seen only by a set of receivers but not by the transmitter, will lead to an inconsistent transfer. The above rule allows receivers to accept frames whose transfer is disturbed by such errors, thus ensuring consistency in the absence of transmitter failure.

However, because of the aforementioned rule, there is the possibility that duplicates of the same frame could be received, by the set of receivers detecting no error until the last but one bit of a given data/remote frame transfer. Furthermore, if after such an error, the transmitter fails before being able to successfully complete the frame transfer, that transfer will stay inconsistent. Although the occurrence of such events displays a low probability value, the design of high layer protocols should be taken it into account.

3.11 PHYSICAL LAYER

The CAN physical medium is a two-wire bus line with common return terminated at both ends by resistors. Differential signal is used for better immunity. The Figure 3.10 shows a transmit signal from a CAN controller, the differential signal emitted on the line and the receive signal received by the CAN controller to monitor the CAN bus.

[image: image12.png]Contoller

ERE

cam

Domaaat

nasaim [

Figure 3.10 CAN Physical Layer And Voltage Levels

As mentioned earlier, CAN is normally a differential twisted pair but there are single wire versions. The twisted pair can be shielded but this lowers the speed of the network. The most popular physical layer has a differential drive with active voltages at 3.5V and 1.5V and passive voltages, both at 2.5 volts; with respect to ground. Figure 3.10 shows the voltage levels for the two CAN signals below. The two wires are designated CAN_Hi and CAN_Lo. A typical CAN bus in a factory automation application is a single line bus with stubs to connect equipments such as PLC, Sensors, and Drives etc., as illustrated by the Figure 3.11.

[image: image13.png]CAN Bus (up to 40m @1MD/s, up to Tkm @50KDIS)

Figure 3.11 Typical CAN Bus Implementation
3.11.1 CAN speeds

Maximum speed is 1 Mbits/sec with 250K and 500K common. The higher the frequency, the shorter the permissible network cable lengths. The maximum CAN cable lengths are typically a 1 meter drop line from the bus and total bus length up to 40 meters (@ 1 Mbit/s). A given system will have only one speed. It is not common to dynamically change speeds on a CAN bus.

3.11.2 Identifier

A CAN message can be Standard with a 11 bit identifier or Extended with a 29 bit identifier. The identifier is used to provide unique frames for use in the system. With 11 bit, 2,048 unique messages are possible and 29 bit provides 536 million. CAN frames are not addressed to a specific recipient. All recipients can see all messages and can accept or ignore any messages according to the system design.
The CAN specification CAN 2.0A has an 11 bit identifier and CAN 2.0B is both 11 and 29 bit. Figures 3.7 and 3.8 show the two general types of CAN data messages. The frame length depends on whether it is 11 or 29 bits, the number of data bytes (0 to 8) and the number of stuffing bits. More on stuffing bits later. A 500 Kbits/sec CAN data stream. has 11-bit identifiers and each message is about 200 µsec wide and the space between them is about 100 µsec. There are about 2,500 such messages every second on this bus.

3.11.3 Error frame

CAN has a robust error mechanism and a CAN controller will take itself off the bus if it detects it has generated too many errors. The only way it can return to the bus is if it (the CAN controller) is forced to a RESET condition. A quality CAN analyzer such as the Gryphon/Hercules system will detect and record these errors for debugging purposes.

3.11.4 Data frame

CAN has 4 types of frames: data, remote, error and overload. CAN data frame consists of a start bit, identifier (11 or 29 bits), data bytes of zero to eight bytes and various small fields including the CRC check. The start of a frame (SOF) is a falling edge and the end of frame is 7 bits high.

3.11.5 Bit stuffing

To help the CAN controller clocks stay synchronized, each CAN message can have no more than 5 bit times without at least one bit transition. The controller will add a bit to the CAN message to satisfy this rule and this is called bit stuffing. The CAN controller chip will automatically add and subtract these bits to the bus. They are normally seen only with an oscilloscope.

3.11.6 Priority levels

The CAN message with the highest priority always gets control of the bus and overrides lower priority messages. The priority is determined by the value of the message identifier. The lowest value corresponds to the highest priority. Zero (0) has a higher priority than two (2) and two has a higher priority that three (3) and so on up to the maximum of the 11 or 29 bit identifiers. This arbitration is automatically evaluated by the CAN controller hardware in real-time as the bits come in from the CAN bus.

3.11.7 Differential voltage levels in CAN

It is important to know that the voltage levels from each of the two CAN lines to ground or to the vehicle chassis are not the important ones. What is crucially important to CAN is the voltage between the two lines or their difference voltage. This is the essence of a differential pair. Therefore, to “pull the bus low” this really means pulling them apart by 2 volts. If all the CAN controllers do nothing, then the two bus lines come together with a difference of 0 volts. This is the idle state.
3.11.8 Recessive and Dominant states

Voltage levels of 0 and 5 volts can be also expressed as low & high, 0 or 1, False or True... or in the case of CAN, Dominant or Recessive. The terms Dominant and Recessive refer not only to the voltage/logic levels, but also gives a sense of the priority scheme of CAN. Dominant is “0” and Recessive is “1”. Dominant overrides Recessive on a bit by bit basis. See Figure 3.10 to review these two possible states of the CAN bus. Any node on the bus can only make the signal go from a “1” to a “0”. It cannot force a “0” into a “1” (Wired OR). At rest, the bus is at a “1”. A node therefore makes a “0” by pulling the bus apart by 2 volts and a “1” by not doing anything and allowing the bus to come together to its idle difference of zero volts.

3.11.9 Arbitration voltage levels

It makes sense then, that a node making a “0” will override another node making a “1” (by doing nothing). This is the essence of CAN arbitration.

3.11.10 Arbitration bit by bit

Each node can detect if its output matches what is on the bus. If a node is putting out a “1” (by doing nothing), and it sees a “1” on the bus, it continues with the next bit and so on until the frame is completed. If it puts out a “1”, and sees a “0” (from another node), it immediately stops sending and this allows the node with the dominant bit to continue its frame. The highest priority message (i.e. the lowest identifier bit = 0) continues transmitting. Remember any node can create a dominant state, but none can force a recessive state over a node creating a dominant state. At the end of the identifier field, either 11 or 29 bits, one CAN message will prevail over all others. This is because it is illegal to put multiple CAN messages on the bus at the same time with the same identifier.

3.12 CAN HIGHER LAYERS PROTOCOLS

DeviceNet, CANopen and J1939 have a lot of similarity as they address similar needs. They all cover bus throughput of 125Kb/s up to 1Mb/s. DeviceNet differentiate itself by being CAN2.0A (11 bit address) as DeviceNet favor small clusters connected together by a second CAN layer called ControlNet. One main ControlNet bus will control multiple DeviceNet clusters through gateways. A migration to Ethernet/IP to replace ControlNet as the upper layer cluster controller bus is being seen now. For a CAN controller it is necessary to support CAN2.0A in order to support the large North American DeviceNet based market led by Rockwell Automation Eaton and others. CANopen is CAN2.0B to support 29-bit address and consequently largely populated bus. With its rich number of application specific profiles, CANopen is the best candidate for a more in depth description in this document.

3.12.1 CANopen detailed description

CANopen supports a maximum speed of 1Mb/s, it uses CAN2.0B 29 bit address Identifier (ID) and 8 byte data. An identifier is unique to a node in the system. CANopen uses an Object dictionary similar to a lookup table. The object dictionary contains the complete state of a slave device connected to a bus. A slave device can be an I/O, an encoder, a drive etc. There is a specific CANopen profile for each category of slave devices. A simple device profile such as the battery charger profile contains 49 entries with 21 indexes and need 1024 bytes of RAM. The object dictionary exhaustively describes the device. A CAN controller must have enough RAM to contain the object dictionary to avoid external RAM.

An exception to this rule is the Programmable Logic Controller (PLC) for which the necessary RAM is too much to be stored inside a standalone device. PLCs act as master to control peripherals in normal operating mode. PLCs are slave to a configuration master during a network configuration phase. A configuration tool or a master such as a PLC will access all slaves attached to it. Please note that multiple PLCs controlling multiple slaves can sit on the same bus. Each PLC will only talk to the slave under their control. This is an illustration of how the unique ID works. The state for a device has been defined above. The way to communicate with it is defined below.

Service Data Object (SDO) is a point-to-point communication. A Master will use a transmit SDO to request a change in a slave Object Dictionary. The Slave will reply with a receive SDO. Both messages will have a unique ID defined by the protocol. Most of the SDO uses only 8 bytes or less and will reside in a single CAN frame. A Slave device will have 2 SDOs (transmit and receive). How the master communicates with the slave has been described above. How slaves can exchange information directly using Process Data Object Communication (PDO) is described next. PDO allow portion of the Object dictionary to be sent. The simplest example is I/O devices that will send the bit value of an input every time a change on this input occur (event driven). Conversely this I/O can respond to a polling request or synchronized with a SYN message. Typical slave applications will have between 5 and 10 different PDOs.

In total, a typical slave application will have 7 to 12 different Identifiers (PDO+SDO). If a CAN controller can handle the different IDs concurrently this will greatly simplify the software and speed-up the CANopen stack execution time. CANopen like DeviceNet and other protocols support segmented transfer (fragmented messages in DeviceNet). This is the technique used to send a packet of information larger than 8 bytes. A good example of segmented messages is the re-flash system to reprogram a peripheral as defined by the CIA-DSP302 recommendation. In CANopen segmented messages will use the first 4 bytes to carry indexes and control status information while the real data will reside in the remaining 4 bytes data payload. CANopen or DeviceNet Slave implementations typically need 10 to 32Kbytes code. The RAM size is dimensioned by the size of the object dictionary.

3.13 CAN APPLICATIONS

Many industries have adopted the CAN bus standard, and gained a lot in reliability and flexibility. For some applications, the cost and speed to deploy or reconfigure a communication network is critical such as a factory floor for instance. A CAN bus can be laid out, then equipments can be added thanks to the plug and play capability of CAN with Higher Layer Protocols.

· CAN in cars and truck engine control

· CAN in non-passenger cars vehicles

· CAN in maritime applications

· CAN in avionics system network

· CAN in factory automations, building

automation and other industrial Control

· CAN in elevators, automatic doors

· CAN in medical equipments
3.14 CONCLUSION

CAN is ideally suited in applications requiring a high number of short messages in a short period of time with high reliability in rugged operating environments. Since CAN is message based and not address based, it is especially suited when data is needed by more than one location and system-wide data consistency is mandatory.

Fault confinement is also a major benefit of CAN. Faulty nodes are automatically dropped from the bus, which prevents any single node from bringing a network down, and assures that bandwidth is always available for critical message transmission. This error containment also allows nodes to be added to a bus while the system is in operation, otherwise known as hot-plugging.

CHAPTER 4
DESIGN OF NODE 3

4.1 GENERAL

Node 3 in the digital driving system is a slave node and is responsible for four tasks. The first task is to monitor temperature using a temperature sensor. The second task is to monitor pressure using a pressure sensor. The third task is to monitor fuel level. The fourth task is to send the control signals for fuel level and digitized values of temperature, pressure to the master node through the CAN bus. This chapter describes the design issues of Node 3 along with its block diagram, circuits and operation.

4.2 CIRCUIT DIAGRAM

[image: image14.emf](RB7/KBI3/PGD)40

Y1

4.00mhz

(VSS)31

1(MCLR/VPP/RE3)

(RB6/KBI2/PGC)39

14(OSC2/CLKO/RA6)

(RD7/PSP7/P1D)30

16(RC1/T1OSI)

6(RA4/T0CKI)

(RD4/PSP4/ECCP1/P1A)27

(RC7/RX/DT)26

(RB5/KBI1/PGM)38

(RB0/INT0/FLT0/AN10)33

18(RC3/SCK/SCL)

5(RA3/AN3/VREF+)

12(VSS)

33pf

(RD2/PSP2/C2IN+)21

MPX51

19(RD0/PSP0/C1IN+)

4(RA2/AN2/VREF-)

(RC4/SDI/SDA)23

9(RE1/WR/AN6/C1OUT)

VCC

LM35

(RD5/PSP5/P1B)28

33pf

(RC5/SDO)24

(RC6/TX/CK)25

10(RE2/CS/AN7/C2OUT)

(RD3/PSP3/C2IN-)22

15(RC0/T1OSO/T13CKI)

(RD6/PSP6/P1C)29

(RB1/INT1/AN8)34

20(RD1/PSP1/C1IN-)

3(RA1/AN1)

8(RE0/RD/AN5)

17(RC2/CCP1)

(RB4/KBI0/AN9)37

VCC

(RB3/CANRX)36

(PRESSURE SENSOR)

1

2

3

(TEMPARATURE SENSOR)

(VDD)32

13(OSC1/CLKI/RA7)

FUEL LEVEL MEASUREMENT

1

2

3

4

VCC

11(VDD)

7(RA5/AN4/ SS /HLVDIN)

NODE 3 (SLAVE)

VCC

To Node 1 TX

To Node 1 RX

PIC18F4685

(RB2/INT2/CANTX)35

2(RA0/AN0/CVREF)

(RB7/KBI3/PGD)40

Y1

4.00mhz

(VSS)31

1(MCLR/VPP/RE3)

(RB6/KBI2/PGC)39

14(OSC2/CLKO/RA6)

(RD7/PSP7/P1D)30

16(RC1/T1OSI)

6(RA4/T0CKI)

(RD4/PSP4/ECCP1/P1A)27

(RC7/RX/DT)26

(RB5/KBI1/PGM)38

(RB0/INT0/FLT0/AN10)33

18(RC3/SCK/SCL)

5(RA3/AN3/VREF+)

12(VSS)

33pf

(RD2/PSP2/C2IN+)21

MPX51

19(RD0/PSP0/C1IN+)

4(RA2/AN2/VREF-)

(RC4/SDI/SDA)23

9(RE1/WR/AN6/C1OUT)

VCC

LM35

(RD5/PSP5/P1B)28

33pf

(RC5/SDO)24

(RC6/TX/CK)25

10(RE2/CS/AN7/C2OUT)

(RD3/PSP3/C2IN-)22

15(RC0/T1OSO/T13CKI)

(RD6/PSP6/P1C)29

(RB1/INT1/AN8)34

20(RD1/PSP1/C1IN-)

3(RA1/AN1)

8(RE0/RD/AN5)

17(RC2/CCP1)

(RB4/KBI0/AN9)37

VCC

(RB3/CANRX)36

(PRESSURE SENSOR)

1

2

3

(TEMPARATURE SENSOR)

(VDD)32

13(OSC1/CLKI/RA7)

FUEL LEVEL MEASUREMENT

1 2 3 4

VCC

11(VDD)

7(RA5/AN4/ SS /HLVDIN)

NODE 3 (SLAVE)

VCC

To Node 1 TX

To Node 1 RX

PIC18F4685

(RB2/INT2/CANTX)35

2(RA0/AN0/CVREF)

Figure 4.1 Circuit Diagram of Node 3

The circuit in Figure 4.1 shows the connection of the sensors and the fuel measurement module to the microcontroller. The temperature sensor used in the circuit is LM35. MPX5100 series pressure sensor is used in the circuit for pressure measurement. The fuel measurement module is made up of an assembly of four wires of different lengths dipped in the fuel container.
4.3 NODE 3 TASKS

The tasks performed by Node 3 are listed in the beginning of this chapter. Each of them is discussed in detail below with necessary details about the components used in the circuit along with its operation.
4.3.1 Temperature measurement

A temperature sensor LM35 is used for temperature measurement. Figure 4.2 shows the temperature measurement module. The sensor senses temperature and produces an analog output voltage proportional to the temperature in centigrade scale. That voltage signal is fed to one of the channels of the Analog to digital converter in the microcontroller and converted to a digital value. The converted value is the equivalent digital value of the temperature measured by the sensor, which is forwarded to the master node through the CAN bus for displaying in the display unit.

[image: image15.emf](TEMPARATURE SENSOR)

5(RA3/AN3/VREF+)

VCC

PIC18F4685

LM35

3(RA1/AN1)

4(RA2/AN2/VREF-)

1(MCLR/VPP/RE3)

2(RA0/AN0/CVREF)

NODE 3 (SLAVE)

(TEMPARATURE SENSOR)

5(RA3/AN3/VREF+)

VCC

PIC18F4685

LM35

3(RA1/AN1)

4(RA2/AN2/VREF-)

1(MCLR/VPP/RE3)

2(RA0/AN0/CVREF)

NODE 3 (SLAVE)

Figure 4.2 Circuit for Temperature Measurement Module

4.3.2 Pressure measurement

An MPX5100 series pressure sensor is used for pressure measurement. Figure 4.3 shows the pressure measurement module. The sensor senses pressure and produces an analog output voltage proportional to the applied pressure. That voltage signal is fed to one of the channels of the Analog to digital converter in the microcontroller and converted to a digital value. The converted value is the equivalent digital value of the pressure measured by the sensor, which is forwarded to the master node through the CAN bus for displaying in the display unit.

[image: image16.emf]4(RA2/AN2/VREF-)

2(RA0/AN0/CVREF)

5(RA3/AN3/VREF+)

NODE 3 (SLAVE)

VCC

(PRESSURE SENSOR)

1

2

3

3(RA1/AN1)

PIC18F4685

1(MCLR/VPP/RE3)

MPX51

4(RA2/AN2/VREF-)

2(RA0/AN0/CVREF)

5(RA3/AN3/VREF+)

NODE 3 (SLAVE)

VCC (PRESSURE SENSOR)

1

2

3

3(RA1/AN1)

PIC18F4685

1(MCLR/VPP/RE3)

MPX51

Figure 4.3 Circuit for Pressure Measurement Module

4.3.3 Fuel level measurement

[image: image17.emf]NODE 3 (SLAVE)

15(RC0/T1OSO/T13CKI)

17(RC2/CCP1)

12(VSS)

FUEL LEVEL MEASUREMENT

1

2

3

4

16(RC1/T1OSI)

PIC18F4685

18(RC3/SCK/SCL)

NODE 3 (SLAVE)

15(RC0/T1OSO/T13CKI)

17(RC2/CCP1)

12(VSS)

FUEL LEVEL MEASUREMENT

1 2 3 4

16(RC1/T1OSI)

PIC18F4685

18(RC3/SCK/SCL)

Figure 4.4 Circuit for Fuel Measurement Module

The fuel measurement module is shown in Figure 4.4. It is made up of an assembly of four wires of different lengths dipped in the fuel container as in Figure 4.5. A separate wire from the ground of the microcontroller is dipped till the lowest level of the fuel container. The assembly of four wires is of different lengths such that the end of each wire lies in each level from top to bottom of the fuel container. The end of the fifth wire (from ground) is in the lowest level as mentioned before. The ends of the other wires lie in different levels as shown in diagram. Since fuel is a good conductor of electricity, the lowest level is at ground potential due to the dipping of the fifth wire in the fuel container. With fuel levels changing from top to bottom upon usage, the wires connecting to the ground wire through the fuel decrease in number. The voltage level of the wire connected to the ground through fuel is low where as the voltage level on the wire not connected to ground through the fuel is high. By measuring the voltage levels on all the wires, we can determine up to which level the fuel is present in the container.
[image: image18.png]12 (VSS)

15 (RCO/T10SO/TI3CKT)
16 RCL/TIOST)

17 RC2CCPY)

18 (RCH/SCKISCL)

PIC 18F4685

o[- Leveld
Node 3 (Slave)
- Level3

= Level2

= Levell

Figure 4.5 Structure of Fuel Measurement Module
Table 4.1 shows the voltage levels on the various pins connected to the wires for corresponding fuel-levels in the fuel container. After finding the fuel level in the container, a control signal is sent to Node1 by the CAN bus to indicate the fuel level.
Table 4.1 Port C (RC0 – RC3) Values for Various Fuel Levels

	
	Fuel up to Level 1
	Fuel up to Level 2
	Fuel up to Level 3
	Fuel up to Level 4

	VSS
	Low
	0
	Low
	0
	Low
	0
	Low
	0

	RC0
	Low
	0
	Low
	0
	Low
	0
	Low
	0

	RC1
	High
	1
	Low
	0
	Low
	0
	Low
	0

	RC2
	High
	1
	High
	1
	Low
	0
	Low
	0

	RC3
	High
	1
	High
	1
	High
	1
	Low
	0

4.3.4 Control task

At the end of all the above tasks, the control information is sent to the master node. The control information for this node includes the digital values for temperature, pressure and a value indicating the fuel level. The control information is sent at the end of each execution of the tasks for temperature measurement, pressure measurement and fuel measurement. This control information is used by the master node to display status as well as raise alarm in case they are in violation of the user specified constraints.
4.4 CONCLUSION

The various functions performed by the slave node - Node 3 are discussed along with the block diagrams, circuits and tables supporting the explanation of its operation.
CHAPTER 5
DESIGN OF NODE 2

5.1 GENERAL

Node 2 in the digital driving system is a slave node and is responsible for four tasks. The first task is obstacle sensing using an IR transmitter-receiver combination. The second task is to control the speed of the car by using PWM over the DC motor drive. The third task is to monitor the speed of the car using a speed measurement module. The fourth task is to send the control signals for the presence of an obstacle and over speed to the master node through the CAN bus. This chapter describes the design issues of Node 2 along with its block diagram, circuits and operation.

5.2 CIRCUIT DIAGRAM

[image: image19]
Figure 5.1 Circuit Diagram of Node 2

The circuit in Figure 5.1 shows the connection of the IR transmitter-receiver combination as well as the speed control/monitoring module with the microcontroller. A 555 timer circuit is used in astable mode to generate a continuous output of 38 kHz frequency which is fed to an IR transmitter. An IR receiver TSOP 1738 is connected to an input pin of the microcontroller. The speed control/monitoring module consists of a DC motor drive that is fed by a PWM signal generated by the microcontroller through an output pin. A combination of relays is used to implement the switching circuit for the speed control drive.

5.3 NODE 2 TASKS
The tasks performed by Node 2 are listed in the beginning of this chapter. Each of them is discussed in detail below with necessary details about the components used in the circuit along with its operation.
5.3.1 Obstacle detection

The obstacle sensing module shown in Figure 5.2 is made up of two components – an IR transmitter circuit and an IR receiver circuit. The IR transmitter circuit is constructed using a 555 timer operating in astable mode generating constant output through an IR transmitter LED. The 555 timer circuit is set to generate continuous IR output signal of 38 kHz frequency at the IR LED. IR receiver is implemented using TSOP 1738, which can receive IR signals of 38 kHz frequency. The IR receiver is connected to one of the input pins of the microcontroller.
As mentioned earlier, the IR transmitter keeps transmitting IR signal at 38 kHz continuously, in all possible directions. The microcontroller is programmed to continuously monitor the input pin connected to the IR receiver for any signal. If no obstacle is present, the transmitted IR signal is lost. If any obstacle is present, the IR signal is reflected back by the surface of the obstacle which is sensed by the IR receiver. Since the IR receiver is connected to the input pin, a signal change that has occurred at the input pin can be used to indicate that an obstacle is present. Once the slave node determines that an obstacle is present, it sends a control signal through the CAN bus to the master node which raises the obstacle alarm.

[image: image20]

[image: image21]
Figure 5.2 Diagrams Showing Operation of Obstacle Detection Module

5.3.1.1 IR transmitter circuit

The transmitter circuit is shown in the Figure 5.3. The circuit is based on a 555 timer operating in astable mode. It continuously generates an output signal of 38 kHz, which is fed to the IR LED for transmission in all possible directions.

[image: image22]
Figure 5.3 IR Transmitter Circuit for Obstacle Detection Module

5.3.1.2 IR receiver circuit

The diagram in Figure 5.4 shows the circuit for connecting the IR receiver to the microcontroller. TSOP 1738 IR receiver is used for receiving the IR waves reflected by an obstacle. It operates at 38 kHz frequency.

[image: image23]
Figure 5.4 IR Receiver Circuit for Obstacle Detection Module

5.3.2 Speed control

The speed control module uses a combination of relays to implement PWM control of the DC motor drive of the vehicle. The microcontroller output pin drives the input for relays for switching the relays on and off. A pair of Dc motors is used – first motor for steering and the other for forward/backward movement of the vehicle. The method used for implementing speed control is PWM control of a DC motor drive. We know that the speed of the DC motor is directly proportional to the voltage applied on it. This principle is used here. PWM control is nothing but varying the average voltage of a square wave signal by modifying the duty cycle of the square wave signal. The average voltage is directly proportional to the duty cycle i.e. if duty cycle is high, the average output voltage is high and so is the speed of the dc motor driven by that signal and vice-versa. So by varying the duty cycle of the output signal using a program in the microcontroller, we can generate a PWM output which can be used to drive the DC motor with speed control options. The speed control is implemented for DC motor controlling the forward/backward movement of the vehicle.

5.3.2.1 Speed control circuit

[image: image24]
Figure 5.5 Circuit of the DC Motor Drive

The circuit for speed control is as shown Figure 5.5. A combination of two relays – one SPDT relay and one DPDT relay along with a pair of transistors is used to implement the switching circuit for the DC motor to control forward/backward movement. N-channel FET 2N7000 is used to switch the DC motor for steering. The DPDT relay is used for controlling the DC motor controlling the forward/backward movement of the vehicle. It is known that the DC motor turns in opposite direction if the polarity of its supply voltage is reversed. To implement this option, the DPDT relay is used. In single switching instance, the polarity of the voltage supply to the DC motor can be reversed using a DPDT relay.
5.3.3 Control task

At the end of all the above tasks, the control information is sent to the master node. The control information for this node includes the control values or flags for indicating the presence of obstacle and the current speed of the vehicle. The control information is sent at the end of each execution of the tasks for speed control and obstacle execution. This control information is used by the master node to display status as well as raise alarm in case there is a violation of the permissible limits of speed prescribed by the user or if any obstacle is observed in the path of the vehicle.
5.4 CONCLUSION

The various functions performed by the slave node - Node 2 are discussed along with the block diagrams, circuits and diagrams supporting the explanation of its operation.
CHAPTER 6
DESIGN OF NODE 1

6.1 GENERAL

Node 1 in the digital driving system is a master node and is responsible for four tasks. The first task is remote sensing using an IR receiver to act upon signals from the IR remote control circuit. The second task is to manage the LCD display unit. The third task is to raise alarms in case of speed violation, detection of obstacle etc. The fourth task is to send the control signals through the CAN bus to the slave nodes for corrective measures, in case of speed violation and detection of obstacle. This chapter describes the design issues of Node 1 along with its block diagram, circuits and operation.

6.2 CIRCUIT DIAGRAM

[image: image25]
Figure 6.1 Circuit Diagram of Node 1

The circuit in Figure 6.1 shows the connection of the remote sensing IR receiver as well as the LCD display with the microcontroller. An IR receiver TSOP 1738 is connected to an input pin of the microcontroller. A 2x16 LCD display is used to implement the display unit to display digital values of temperature, pressure, change in inputs from the remote control etc. Alarms for each parameter in the vehicle system are implemented using individual LEDs.

6.3 NODE 2 TASKS

The tasks performed by Node 1 are listed in the beginning of this chapter. Each of them is discussed in detail below with necessary details about the components used in the circuit along with its operation.
6.3.1 IR Remote sensing

[image: image26]
Figure 6.2 IR Remote Sensing - Receiver module

The remote sensor is made up an IR receiver. IR receiver is implemented using TSOP1738, which can receive IR signals of 38 kHz frequency. The IR receiver is connected to one of the input pins of the microcontroller. The microcontroller is programmed to continuously sense any change at the input pin. In case there is any input from the remote control circuit, a signal change occurs in the IR receiver output which is sensed by the microcontroller and necessary action is done accordingly. A television remote based on the RC5 code for IR signals is used as the remote control circuit. Figure 6.2 shows the IR remote sensing module.

6.3.2 LCD display

[image: image27]
Figure 6.3 LCD Display Circuit

Figure 6.3 shows the LCD display circuit. The LCD display used is a 2x16 LCD. It is used to periodically display the digital values for temperature and pressure, the current status of the vehicle. The digital values of temperature, pressure are obtained from the ADC registers. Other values to be displayed are the current status of the vehicle like speed, fuel-level and presence of an obstacle. For these values, individual flags are used to be monitored by the display routine to determine the current status and then send the corresponding data to be displayed.

6.3.3 Alarms

[image: image28]
Figure 6.4 Alarm Circuit

Figure 6.4 shows the circuit for alarms for the various vehicle parameters. Individual alarms are implemented for temperature, speed, pressure, fuel-level and obstacle. LEDs are used for indicating the alarm. They are connected to the output pins of the microcontroller and glow when the respective alarm is to be raised. Alarms are raised in case a violation of the user specified constraints is observed during the operation of the vehicle.

6.3.4 Control task

The control information is sent from the master node to the slave node in case of a speed violation or detection of an obstacle so that corrective action can be invoked by the slave nodes. The slave nodes keep sending control information about the status of the vehicle to the master node as well as monitor the control information from the master node indicating correct operation. In case malfunction occurs, the master node sends control information indicating malfunction, which is read by the slave node and immediate corrective action is taken. The control task is also responsible for constantly updating the current status of the various parameters in the vehicle through CAN bus from the slave nodes and keep sending/receiving the control signals in the CAN network to maintain correct operation of the vehicle.
6.4 HARDWARE IMPLEMENTATION

The circuit board containing the embedded controller, the dc motor driver, the stepper motor driver and the IR receiver is mounted on the vehicle such that the IR receiver is able to receive the IR signal from the remote control transmitter without any big disturbance. The Figure 6.5 shows the vehicle mounted with both the drives and the circuit board. For testing purposes, the wired power supply is provided from a step-down transformer. The supply can be provided by using a battery to facilitate the mobility of the vehicle.

The driver circuits for both the dc motor drive and the stepper motor drive have been implemented along with the microcontroller circuit on a circuit board and were tested satisfactorily using test programs. The remote transmitter receiver setup also gave satisfactory results when tested using a test program.

Conclusion
FEASIBILITY STUDY

 During system analysis, a feasibility study of the proposed system is carried out to see whether it is beneficial to the organization. The feasibility study results in the preparation of a report called the feasibility study report, which is submitted to the management for consideration. This report contains the following details.

-A proposed solution to the problem

-Rough estimates of cost/benefit analysis if the

 Solution is implemented

-Approximate time, effort and the cost estimates for the completion

There are three aspects in the feasibility study. They are

· Technical feasibility

· Operational feasibility

· Economical feasibility

TECHNICAL FEASIBILITY

 This deals with specifying equipment and software that will satisfy the user requirement. The technical needs of the system may vary considerably, but they may include.

-The facility to generate outputs in a given time

-Response time under certain conditions

-Ability to process a certain volume of queries in a short span

-Facility to communicate easily

OPERATIONAL FEASIBILITY

 Operational feasibility is related to human organizational and political aspects. The points to be considered are the changes to be made, organizational structures affected and news skills required. The feasibility study is carried out by a small group of people who are familiar with information system techniques and organizational structure.
ECONOMIC FEASIBILITY

 Economic feasibility concerns returns from investments in the proposed project. It determines whether it is worthwhile to invest money in the proposed project. To ensure that new project will certainly lead to benefits outweighing cost, Cost Benefit Analysis is carried out.

Conclusion
· CAN is ideally suited in applications requiring a high number of short messages in a short period of time with high reliability in rugged operating environments. Since CAN is message based and not address based, it is especially suited when data is needed by more than one location and system-wide data consistency is mandatory.

· Fault confinement is also a major benefit of CAN. Faulty nodes are automatically dropped from the bus, which prevents any single node from bringing a network down, and assures that bandwidth is always available for critical message transmission. This error containment also allows nodes to be added to a bus while the system is in operation, otherwise known as hot-plugging.

Future Enhancement
· The Can network was implemented as single master multi slave network.
· This can be expanded to a multi master multi slave network which will enhance the capabilities of the system to a great extent.
· Also The RTOS can be implemented for the controller as well as the fromt end which will enhance the system.

REFERENCES

1. C. Little (1999), “The Intelligent Vehicle Initiative: Advancing ‘Human-Centered’ Smart Vehicles”, Turner-Fairbank Highway Research Center, McLean, Va.

2. Douglas W. Gage (1995), “UGV HISTORY 101: A Brief History of Unmanned Ground Vehicle (UGV) Development Efforts”, Unmanned Systems Magazine, Vol. 13, No. 3, pp. 1-9.
3. Fei-Yue Wang , Pitu B. Mirchandani and Zhixue Wang (2002), “The VISTA Project and Its Applications”, IEEE Magazine on Intelligent Transportation Systems, pp. 72-75.

4. Gerd Krämer (2001), “Envisioning a Radar-Based Automatic Road Transportation System”, IEEE Magazine on Intelligent Transportation Systems, pp. 75-77.

5. John Rinaldi and Vince Leslie (2003), “The Fast Guide to Controller Area Network (CAN) Application Layers”, Real Time Automation, pp. 1-8.

6. Julian Kolodko and Ljubo Vlacic (2003), “Cooperative Autonomous Driving at the Intelligent Control Systems Laboratory”, IEEE Magazine on Intelligent Transportation Systems, pp. 8-11.

7. Luis Manuel et al (2002), “Mimics: Exploiting Satellite Technology for an Intelligent Convoy”, IEEE Magazine on Intelligent Transportation Systems, pp. 85-89.

8. Richard Bishop (2000), “Intelligent vehicle applications worldwide”, IEEE Magazine on Intelligent Transportation Systems, pp. 78-81.

9. Robert Boys (2004), “CAN: Controller Area Network Introduction and Primer”, Dearborn Group Technology, pp. 1-8.

10. Steve Corrigan (2002), “Introduction to the Controller Area Network”, Texas Instruments Application Report, pp. 1-17.
11. Tatsuya Yoshida, Hiroshi Kuroda and Takaomi Nishigaito (2004), “Adaptive Driver-assistance Systems” Hitachi Review, Vol. 53, pp. 212-216.

12. U. Franke et al (1999), “Autonomous Driving approaches Downtown”, IEEE Intelligent systems, Vol. 13, nr .6,pp. 1-14.

13. Wuhong Wang (2002), “A Digital-Driving System for Smart Vehicles”, IEEE Magazine on Intelligent Transportation Systems, pp. 81-83.

 The transmitted waves

 are reflected back….

 If obstacle is present….

O

B

S

T

A

C

L

E

IR RECEIVER

TSOP 1738

555 TIMER BASED

IR TRANSMITTER

 The transmitted waves

 are lost, not reflected back….

 If obstacle is not present….

N

O

O

B

S

T

A

C

L

E

IR RECEIVER

TSOP 1738

555 TIMER BASED

IR TRANSMITTER

Yet to do

[image: image29.wmf]LM35(TEMPARATURE SENSOR)

TSOP1738

IR Receiver

17(RC2/CCP1)

17(RC2/CCP1)

LED

LED

LED

LED

LED

C5

33pf

VCC

VCC

R4

100ohms

C4

33pf

R9

10 K POT

1

3

2

J4

LCD Display

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

VCC

VCC

C5

100mfd

VCC

R4

1K

Y1

4.00mhz

VCC

POT

1

3

2

(RB0/INT0/FLT0/AN10)33

(RD6/PSP6/P1C)29

3(RA1/AN1)

470ohms

(RB3/CANRX)36

(RD4/PSP4/ECCP1/P1A)27

15(RC0/T1OSO/T13CKI)

VCC

IR LED

10(RE2/CS/AN7/C2OUT)

4(RA2/AN2/VREF-)

(RC5/SDO)24

13(OSC1/CLKI/RA7)

19(RD0/PSP0/C1IN+)

VCC

(RB6/KBI2/PGC)39

0.01mfd

5(RA3/AN3/VREF+)

(VDD)32

D4

1N4001

1

2

VCC

1(MCLR/VPP/RE3)

20(RD1/PSP1/C1IN-)

(RB2/INT2/CANTX)35

1K

16(RC1/T1OSI)

6(RA4/T0CKI)

11(VDD)

(RD5/PSP5/P1B)28

(RC6/TX/CK)25

(RD7/PSP7/P1D)30

(VSS)31

17(RC2/CCP1)

0.01mfd

18(RC3/SCK/SCL)

(RC7/RX/DT)26

VCC

(RC4/SDI/SDA)23

IR LED

2(RA0/AN0/CVREF)

(RB5/KBI1/PGM)38

VCC

R7

1k

(RB7/KBI3/PGD)40

8(RE0/RD/AN5)

PIC18F4685

(RD3/PSP3/C2IN-)22

(RB1/INT1/AN8)34

BC547

1

2

3

10k

(RB4/KBI0/AN9)37

(RD2/PSP2/C2IN+)21

R4

100ohms

1

12(VSS)

14(OSC2/CLKO/RA6)

9(RE1/WR/AN6/C1OUT)

C5

100mfd

5

8

7

3

IR Transmitter

6

LM555

4

(RB4/KBI0/AN9)37

(RC4/SDI/SDA)23

2

(RB3/CANRX)36

(RD2/PSP2/C2IN+)21

C5

33pf

R3

1K

C4

33pf

12(VSS)

Y1

4.00mhz

(RB2/INT2/CANTX)35

(RD4/PSP4/ECCP1/P1A)27

C3

10mfd

R3

1K

13(OSC1/CLKI/RA7)

VCC

1(MCLR/VPP/RE3)

16(RC1/T1OSI)

(VSS)31

(RB1/INT1/AN8)34

VCC

(RB0/INT0/FLT0/AN10)33

2(RA0/AN0/CVREF)

18(RC3/SCK/SCL)

J5

FUEL LEVEL MEASUREMENT

1

2

3

4

(VDD)32

3(RA1/AN1)

14(OSC2/CLKO/RA6)

(RC6/TX/CK)25

4(RA2/AN2/VREF-)

15(RC0/T1OSO/T13CKI)

PIC18F4685

5(RA3/AN3/VREF+)

19(RD0/PSP0/C1IN+)

6(RA4/T0CKI)

20(RD1/PSP1/C1IN-)

(RD7/PSP7/P1D)30

(RC7/RX/DT)26

8(RE0/RD/AN5)

(RD3/PSP3/C2IN-)22

(RB7/KBI3/PGD)40

9(RE1/WR/AN6/C1OUT)

(RD6/PSP6/P1C)29

VCC

10(RE2/CS/AN7/C2OUT)

(RB6/KBI2/PGC)39

(RC5/SDO)24

(RD5/PSP5/P1B)28

11(VDD)

(RB5/KBI1/PGM)38

VCC

C5

33pf

J3

MPX51(PRESSURE SENSOR)

1

2

3

C4

33pf

Y1

4.00mhz

C2

470mfd

C1

2200mfd

U1

LM7805

VIN

1

GND

3

VOUT

2

1N4001

1

2

8(RE0/RD/AN5)

14(OSC2/CLKO/RA6)

TSOP1738

NODE 1 (MASTER)

C3

470mfd

NODE 3 (SLAVE)

PIC18F4685

D5

LED

NODE 2 (SLAVE)

(RB3/CANRX)36

IR Receiver

R1

470ohm

3(RA1/AN1)

11(VDD)

230V/6V

TRANSFORMER

1

3

2

5

V1

230Vac

0Vdc

Relay_SPDT

COM

A

B

NC

NO

19(RD0/PSP0/C1IN+)

(RD7/PSP7/P1D)30

(RB4/KBI0/AN9)37

(RB1/INT1/AN8)34

VCC

(RD4/PSP4/ECCP1/P1A)27

(RB5/KBI1/PGM)38

1N4001

1

2

9(RE1/WR/AN6/C1OUT)

Relay_DPDT

COM1

A

B

NC1

NO1

COM2

NC2

NO2

1N4001

1

2

1N4001

1

2

6(RA4/T0CKI)

18(RC3/SCK/SCL)

2(RA0/AN0/CVREF)

13(OSC1/CLKI/RA7)

1(MCLR/VPP/RE3)

VCC

(RC6/TX/CK)25

(RB7/KBI3/PGD)40

(RC5/SDO)24

(RB0/INT0/FLT0/AN10)33

10(RE2/CS/AN7/C2OUT)

4(RA2/AN2/VREF-)

5(RA3/AN3/VREF+)

(RIGHT/LEFT)

Q2

BC547

1

2

3

VCC

R6

100ohms

VCC

Q2

BC547

1

2

3

R6

100ohms

(RB6/KBI2/PGC)39

(VSS)31

(FORWARD/REVERSE)

R2

10k

12v

20(RD1/PSP1/C1IN-)

16(RC1/T1OSI)

(RD3/PSP3/C2IN-)22

R6

100ohms

R2

10k

12(VSS)

A

-

+

DC MOTOR

R2

10k

Q3

2N7000

A

-

+

DC MOTOR

(RD6/PSP6/P1C)29

(RD5/PSP5/P1B)28

15(RC0/T1OSO/T13CKI)

(RD2/PSP2/C2IN+)21

(VDD)32

(RC7/RX/DT)26

(RB2/INT2/CANTX)35

(RC4/SDI/SDA)23

TR

CV

GND

VCC

RST

DCH

THR

OUT

7(RA5/AN4/ SS /HLVDIN)

7(RA5/AN4/ SS /HLVDIN)

7(RA5/AN4/ SS /HLVDIN)

[image: image30.wmf](RC5/SDO)24

(RC6/TX/CK)25

(RIGHT/LEFT)

(RC4/SDI/SDA)23

NODE 2 (SLAVE)

PIC18F4685

BC547

1

2

3

VCC

100ohms

VCC

BC547

1

2

3

100ohms

10k

10k

A

-

+

DC MOTOR

(FORWARD/REVERSE)

R2

10k

12v

R6

100ohms

A

-

+

DC MOTOR

Q3

2N7000

Relay_SPDT

COM

A

B

NC

NO

Relay_DPDT

COM1

A

B

NC1

NO1

COM2

NC2

NO2

VCC

[image: image31.wmf]TSOP1738

IR Receiver

VCC

(RB0/INT0/FLT0/AN10)33

PIC18F4685

R4

100ohms

C5

100mfd

NODE 2 (SLAVE)

(RB1/INT1/AN8)34

(VDD)32

[image: image32.wmf]R9

POT

1

3

2

1

R8

470ohms

5

D5

IR LED

8

7

VCC

C5

0.01mfd

D4

1N4001

1

2

VCC

R5

1K

3

IR Transmitter

C5

0.01mfd

D5

IR LED

6

VCC

R7

RESISTOR

4

Q1

BC547

1

2

3

LM555

2

RST

1k

10k

CV

GND

TR

DISCH

VCC

THR

OUT

[image: image33.wmf]IR Receiver

TSOP1738

(RB0/INT0/FLT0/AN10)33

VCC

3(RA1/AN1)

(RD6/PSP6/P1C)29

(RB3/CANRX)36

(RD4/PSP4/ECCP1/P1A)27

15(RC0/T1OSO/T13CKI)

VCC

10(RE2/CS/AN7/C2OUT)

(RC5/SDO)24

4(RA2/AN2/VREF-)

13(OSC1/CLKI/RA7)

19(RD0/PSP0/C1IN+)

(RB6/KBI2/PGC)39

(VDD)32

5(RA3/AN3/VREF+)

20(RD1/PSP1/C1IN-)

(RB2/INT2/CANTX)35

1(MCLR/VPP/RE3)

6(RA4/T0CKI)

11(VDD)

16(RC1/T1OSI)

(RD5/PSP5/P1B)28

(RC6/TX/CK)25

(RD7/PSP7/P1D)30

17(RC2/CCP1)

(VSS)31

18(RC3/SCK/SCL)

(RC7/RX/DT)26

VCC

(RC4/SDI/SDA)23

(RB5/KBI1/PGM)38

2(RA0/AN0/CVREF)

(RB7/KBI3/PGD)40

PIC18F4685

8(RE0/RD/AN5)

(RD3/PSP3/C2IN-)22

(RB1/INT1/AN8)34

(RD2/PSP2/C2IN+)21

(RB4/KBI0/AN9)37

R4

100ohms

12(VSS)

14(OSC2/CLKO/RA6)

9(RE1/WR/AN6/C1OUT)

C5

100mfd

C5

33pf

C4

33pf

Y1

4.00mhz

NODE 2 (SLAVE)

Relay_SPDT

COM

A

B

NC

NO

Relay_DPDT

COM1

A

B

NC1

NO1

COM2

NC2

NO2

VCC

(RIGHT/LEFT)

(FORWARD/REVERSE)

VCC

Q2

BC547

1

2

3

R6

100ohms

VCC

Q2

BC547

1

2

3

R6

100ohms

R2

10k

12v

R6

100ohms

R2

10k

R2

10k

A

-

+

DC MOTOR

A

-

+

DC MOTOR

7(RA5/AN4/ SS /HLVDIN)

To Node 1 TX

To Node 1 RX

Q3

2N7000

[image: image34.wmf]LED1

LED2

LED3

LED4

LED5

(RB4/KBI0/AN9)37

(RB5/KBI1/PGM)38

(RB6/KBI2/PGC)39

(RB1/INT1/AN8)34

PIC18F4685

(RB7/KBI3/PGD)40

NODE 1 (MASTER)

(VSS)31

(VDD)32

VCC

LED 1 - PRESSURE ALARM

LED 3 - OBSTACLE ALARM

LED 2 - TEMPARATURE ALARM

LED 5 - OVER SPEED ALARM

LED 4 - FUEL ALARM

[image: image35.wmf]VCC

R4

1K

(RD3/PSP3/C2IN-)22

(RD6/PSP6/P1C)29

(RD5/PSP5/P1B)28

(RD2/PSP2/C2IN+)21

(RD4/PSP4/ECCP1/P1A)27

20(RD1/PSP1/C1IN-)

19(RD0/PSP0/C1IN+)

PIC18F4685

(RD7/PSP7/P1D)30

J4

LCD Display

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

VCC

NODE 1 (MASTER)

R9

10 K POT

1

3

2

[image: image36.wmf]IR Receiver

TSOP1738

PIC18F4685

(RB0/INT0/FLT0/AN10)33

NODE 1 (MASTER)

VCC

R4

100ohms

C5

100mfd

